一个OV7910和三个OV6920影像传感器,两种类型都有AV端子(NTSC)输出。
OmniPixel3-HS
编辑
OMNIVISION的正面照明(Front-Side Illumination,FSI)技术用于制造小型相机,其装置于智能手机、笔记型电脑和其他需要低光效能而无需闪光灯的应用。
OmniPixel3-GS在其前身的基础上进行扩展,用于面部认证的眼动追踪[20],以及其他电脑视觉应用。
OmniBSI
编辑
背面照明影像(Back-Side Llluminated,BSI)技术与FSI架构的不同之处,在于如何将光线传递到传感器的光敏区。在FSI架构中,光线必须首先通过晶体管、电介质层和金属电路。相反地,OmniBSI技术将影像传感器倒过来,在像素的背面应用彩色滤光片和微透镜,从而通过传感器背面收集光线。
OmniBSI-2
编辑
第二代BSI技术由OMNIVISION与TSMC台湾积体电路制造合作开发,采用客制化的65奈米设计规则和300毫米铜制程制造,这些技术的改变是为了改善低光灵敏度、暗电流和电位能井容量,并提供更清晰的影像。
CameraCubeChip
编辑
在相机模组(英语:Camera module)中[21],传感器和镜头的制造过程采用半导体堆叠方法,透过结合CMOS影像传感器、芯片级封装制程(Chip Scale Packaging,CSP)和晶圆级微透镜(英语:Microlens)(Wafer-Level Optics (页面存档备份,存于互联网档案馆),WLO)的单一步骤,制造出晶圆级光学器件。这些完全整合的芯片产品,具有相机功能且有助于生产体积轻薄短小的装置。
RGB-Ir 技术
编辑
RGB-Ir技术使用彩色滤光片制程提高色彩的保真度,透过将其像素阵列图案的25%投入到红外线,75%投入到三原色光模式,可同时捕获三原色光模式和红外线影像,使其有能力用同一个传感器,捕捉白天和夜晚的影像。该技术用于以电池供电的家庭保全摄影机,以及生物识别,如手势和面部识别[22]。
PureCel 技术
编辑
OMNIVISION开发了PureCel和PureCel Plus影像传感器技术,为智能手机和运动摄影提供更多的摄影功能,目标是提供更小的相机模组,其可实现更大的光学格式,并提供更好的影像品质,尤其是在低光照条件下的品质[23]。
这两种技术都是以堆叠芯片的形式提供(PureCel-S 和 PureCelPlus-S),这种堆叠式芯片方法将成像阵列与影像传感器处理管道分离成一个堆叠式芯片架构,可以在传感器上实现额外功能,且与非堆叠式传感器相比,提供了更小的芯片尺寸。PureCelPlus-S使用部分深沟隔离(Deep Trench Isolation,B-DTI)结构,其包括接口氧化物、首次沉积的HfO、TaO、氧化物、Ti基衬垫和钨芯。这是OMNIVISION的第一个DTI结构,也是自2013年以来第一个金属填充的B-DTI沟槽架构[24]。
PureCel Plus使用埋藏式彩色滤光片阵列(Buried Color Filter Array,BCFA)来收集各种入射光角度的光线,以提高容差,深沟隔离通过在芯片内部的像素之间建立隔离墙来减少串扰耦合。
在PureCel Plus第二代中,OMNIVISION为实现更好的像素隔离和低光效能,着手改进深沟隔离,其目标应用为智能手机摄影镜头[25]。
DCG HDR 技术
编辑
OMNIVISION开发了其独特的DCG技术,以扩大影像传感器的动态范围,并在具有挑战性的照明条件下实现准确的场景再现。它采用了光生电荷的双重采样,同时具有像素级的高低转换增益,高转换增益读出能够降低读取噪声,而低转换增益能够实现更高的全井容量,扩展了影像传感器的低光范围,提供准确、低噪声和无移动性假象的HDR画面撷取。
SCG 技术
编辑
SCG技术能够在所有照明条件下,实现最佳影像品质和最佳信号噪声比。
透过将高、低转换增益与SCG开关相连接,即可启动选择性电荷检测,以获得最佳读出路径。额外的转换增益和SCG开关可以在一个影像传感器中容纳极亮和极暗的影像读出,同时提供出色的影像品质。
该技术使影像传感器能够选择最佳的读出路径,以消除极亮光线条件下的影像饱和度,并降低超低光环境下的噪声水准。
Nyxel
编辑
OMNIVISION的Nyxel近红外线成像技术,是为了满足先进的机器视觉、监控和汽车摄影机应用的低光和夜视(英语:Night vision)效能要求而开发,结合了厚芯片像素架构和对晶圆表面纹理的精心管理以提高量子效率。此外,扩展的深沟隔离有助于在不影响传感器暗电流的情况下,保留调制转换函数,进一步提高夜视能力[26]。效能改进包括影像品质、扩展的影像侦测范围和更低的光源要求,从而降低整体系统功耗[27]。
Nyxel 2
编辑
第二代Nyxel近红外技术在第一代基础上改进,增加硅的厚度以提高成像灵敏度,深沟隔离得到进一步扩展以解决串扰问题,而不影响光学调节传送功能(英语:Optical transfer function)。芯片表面经过改进后,改善扩展的光子路径并增加光电子转换,与第一代技术相比,该传感器在不可见的940奈米电磁波谱中,达成了25%的改进,在几乎不可见的850奈米近红外波长中,达成了17%的改进[28]。
LED闪烁缓解和高动态范围
编辑
高动态范围成像依赖于算法,将数个影像撷取合并为一个,以创建一个比单独的原始撷取更高品质的影像。发光二极管(LED)照明在HDR下可能会产生闪烁效应。这对机器视觉系统来说是个问题,例如用于自动驾驶汽车的机器视觉系统。这是因为LED在汽车环境中无处不在,从车头灯到交通号志、路标等都使用LED灯具。虽然人眼可以适应LED的闪烁,但机器视觉却不能。为了减轻这种影响,OMNIVISION采用了分割像素技术。让一个大的光电二极管使用短曝光时间捕捉一个场景。一个小型光电二极管则使用长曝光时间同时捕捉LED信号。然后,这两幅影像会被整合到最终的图片中,成为一个无闪烁的影像[29]。